A Part of the University of Maryland Medical Center

Connect with UMGCC
Facebook Twitter YouTube Blog iPhone
Email PageEmail page Print PagePrint page

Research Programs

High Throughput Screening (HTS) Shared Service: References

  1. Karnell, R., Vonschoultz, E., Hansson, L.O. Nilsson, B., Arstrand, K., Kagedal, B., S100B Protein, 5-S-Cysteinyldopa and 6-Hydroxy-5-methhoxyindole-2-carboxylic Acid as Biochemical Markers for Survival Prognosis in Patients with Malignant Melanoma. Melanoma Res., 1997. 7: p. 393-399.

  2. Mohammed, M.Q., et al., Serum S100beta protein as a marker of disease activity in patients with malignant melanoma. Medical Oncology, 2001. 18(2): p. 109-20.

  3. Baudier, J., et al., Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci U S A, 1992. 89(23): p. 11627-31.

  4. Lin, J., et al., Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J. Biol. Chem., 2004. 279: p. 34071-34077.

  5. Lin, J., et al., Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J Biol Chem, 2001. 276(37): p. 35037-41.

  6. Weber, D.J., et al., Interaction of dimeric S100B(bb) with the tumor suppressor protein: A model for Ca-dependent S100-target protein interactions. The molecular basis of calcium action in biology and medicine, ed. R. Pochet. 2000, Dordrecht, The Netherlands: Kluwer Academic Publishers. 469-487.

  7. Takashi, M., et al., Elevated concentrations of the beta-subunit of S100 protein in renal cell tumors in rats. Urol. Res., 1994. 22: p. 251-255.

  8. Suzushima, H., et al., Adult T-cell leukemia derived from S100-beta positive double-negative (CD4- CD8-) T cells. Leuk. Lymph., 1994. 13: p. 257-262.

  9. Charpentier, T.H., et al., Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry, 2009. 48(26): p. 6202-12.

  10. Soule, H.D., et al., Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res, 1990. 50(18): p. 6075-86.

  11. Lin, C.Y., et al., Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci, 2008. 13: p. 621-35.

  12. Hoang, C.D., et al., Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest, 2004. 125(5): p. 1843-52.

  13. Ito, Y., et al., Co-expression of matriptase and N-acetylglucosaminyltransferase V in thyroid cancer tissues--its possible role in prolonged stability in vivo by aberrant glycosylation. Glycobiology, 2006. 16(5): p. 368-74.

  14. Kang, J.Y., et al., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res, 2003. 63(5): p. 1101-5.

  15. Lee, J.W., et al., Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol, 2005. 36(6): p. 626-33.

  16. Oberst, M.D., et al., Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res, 2002. 8(4): p. 1101-7.

  17. Saleem, M., et al., A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev, 2006. 15(2): p. 217-27.

  18. Santin, A.D., et al., The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer, 2003. 98(9): p. 1898-904.

  19. Tanimoto, H., et al., Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer, 2005. 92(2): p. 278-83.

  20. Vogel, L.K., et al., The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer, 2006. 6: p. 176.

  21. Ihara, S., et al., Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem, 2002. 277(19): p. 16960-7.

  22. List, K., et al., Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev, 2005. 19(16): p. 1934-50.

  23. Suzuki, M., et al., Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem, 2004. 279(15): p. 14899-908.

  24. Benaud, C.M., et al., Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis, 2002. 19(7): p. 639-49.

  25. Lee, M.S., et al., Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol, 2005. 288(4): p. C932-41.

  26. Molloy, S.S., et al., Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol, 1999. 9(1): p. 28-35.

  27. Bassi, D.E., H. Mahloogi, and A.J. Klein-Szanto, The proprotein convertases furin and PACE4 play a significant role in tumor progression. Mol Carcinog, 2000. 28(2): p. 63-9.

  28. De Vos, L., et al., MMTV-cre-mediated fur inactivation concomitant with PLAG1 proto-oncogene activation delays salivary gland tumorigenesis in mice. Int J Oncol, 2008. 32(5): p. 1073-83.

  29. Scamuffa, N., et al., Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J Clin Invest, 2008. 118(1): p. 352-63.

This page was last updated on: March 3, 2010.